Lipschitz differences and Lipschitz functions
نویسندگان
چکیده
منابع مشابه
Controlling Lipschitz functions
Given any positive integers m and d, we say the a sequence of points (xi)i∈I in Rm is Lipschitz-d-controlling if one can select suitable values yi (i ∈ I) such that for every Lipschitz function f : Rm → Rd there exists i with |f(xi)−yi| < 1. We conjecture that for every m ≤ d, a sequence (xi)i∈I ⊂ Rm is d-controlling if and only if sup n∈N |{i ∈ I : |xi| ≤ n}| nd =∞. We prove that this conditio...
متن کاملInterpolation of Lipschitz functions
This paper describes a new computational approach to multivariate scattered data interpolation. It is assumed that the data is generated by a Lipschitz continuous function f. The proposed approach uses the central interpolation scheme, which produces an optimal interpolant in the worst case scenario. It provides best uniform error bounds on f, and thus translates into reliable learning of f. Th...
متن کاملBandlimited Lipschitz Functions
We study the space of bandlimited Lipschitz functions in one variable. In particular we provide a geometrical description of interpolating and sampling sequences for this space. We also give a description of the trace of such functions to sequences of critical density in terms of a cancellation condition.
متن کاملEssentially Smooth Lipschitz Functions
In this paper we address some of the most fundamental questions regarding the differentiability structure of locally Lipschitz functions defined on separable Banach spaces. For example, we examine the relationship between integrability, D-representability, and strict differentiability. In addition to this, we show that on any separable Banach space there is a significant family of locally Lipsc...
متن کاملBi-Lipschitz Decomposition of Lipschitz functions into a Metric space
We prove a quantitative version of the following statement. Given a Lipschitz function f from the k-dimensional unit cube into a general metric space, one can be decomposed f into a finite number of BiLipschitz functions f |Fi so that the k-Hausdorff content of f([0, 1] r ∪Fi) is small. We thus generalize a theorem of P. Jones [Jon88] from the setting of R to the setting of a general metric spa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Colloquium Mathematicum
سال: 1997
ISSN: 0010-1354,1730-6302
DOI: 10.4064/cm-72-2-319-324